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Whilst network connectivity has vastly improved in terms 

of speed and reliability in recent times, the ability to 

utilise the available bandwidth efficiently has not really 

kept pace with these changes. Aritari’s ViBE SD-WAN was 

developed in order to redress this balance, and to make 

the modern network more efficient and controllable 

whilst giving higher visibility and availability when 

problems occur. Initially developed with Voice over IP 

(VoIP ) in mind, over the years it has extended its reach to 

all traffic sent over the WAN whilst retaining the initial 

philosophy of allowing existing infrastructure to fulfil its 

maximum potential. 
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The advantages of using ViBE are many, but include: 

• Faster throughput when using TCP connections, which are the majority of connections in use on the Internet 

today. 

• Much less impact on network performance when transient or more permanent issues occur. 

• Instant notification of degraded performance and the near real-time visibility of network parameters such as 

latency, loss, bandwidth, and predicted MOS score for G.711 VoIP. 

• Full central control and configuration (“orchestration” ) of network and device operation, so that customer 

CPE devices can be provisioned and configured centrally. This includes all aspects of the CPE, such as firewall 

and DHCP server, for example. There is also the possibility to automatically generate device configurations 

based on customer requirements. 

• Much more efficient use of bandwidth, especially VoIP and transactional data which typically uses small 

packets of information, but also with file transfers and other applications. 

• Near-instantaneous switch to backup networks with no loss of ongoing connections in the case of a 

degraded or failed main network. The main and backup networks can be over any combination of any 

medium, for example fibre, satellite, cellular data or DSL. Default configuration results in around a second of 

interruption when a major link fails, though this can be configured to be much less if required (but in any 

case, IP addressing etc. remains consistent, so no connections are lost. ) 

• Bonding of multiple connections of varying bandwidths and technologies, with the ability for any single data 

stream to use all available throughput on all links simultaneously. Individual links are monitored and can 

automatically be taken out of service if certain performance parameters aren’t met, and then restored once 

the quality improves above a certain threshold. 

• Packet loss mitigation using multiple links simultaneously (RAIN mode) or a single link with redundant data. 

This can be combined with bonding or only used for certain types of traffic, such as voice. 

• Optional encryption of all traffic. Note that this is disabled by default, on the basis that pretty much 

everything sent on the WAN is encrypted anyway these days and adding an additional layer of encryption 

would be pointless. 

• Optional traffic reduction over multiple routes. This feature allows multiple endpoint addresses to be used for a 

single connection, thus splitting all traffic over multiple routes and making it impossible to monitor that traffic for 

any single third party. Each endpoint address is individually monitored to ensure that connectivity is available. 

• Optional ViBE transport protocols. The default is to use UDP, but occasionally and in specific circumstances 

service providers and network backbone providers can introduce restrictions to the flow of UDP, so it’s 

possible to configure ViBE to use TCP or even ICMP as its transport protocol. 

• Complete support for operation through NAT - either the CPE device or server can be behind a NAT device. 

• The ability to be deployed on physical hardware, or virtual machines/cloud infrastructure such as AWS or Azure, 

and as a managed service or white-label product, as well as individual deployment within customer infrastructure. 

• Optional full layer 2 support, including the ability to transport VLAN and double- tagged VLAN traffic through 

the tunnel. (V7, in testing phase. ) 

• Optional data deduplication and compression support (V7, in testing phase.) This requires that data through 

the tunnel is NOT encrypted, so would only be of use in cases where both ViBE endpoints are on user-

controlled networks, so that all encryption of user data can be disabled, and ViBE tunnel encryption enabled 

in order to maintain privacy. 

This document will focus on the TCP acceleration features of the Aritari ViBE SD-WAN solution, and you can see 

some examples of the difference it makes at the end.  
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The vast majority of large data transfer on the 

Internet today takes place over the Transmission 

Control Protocol (TCP, ) which is a reliable 

transport mechanism that guarantees delivery of 

data across a network. Unfortunately, TCP was 

designed in the early 1970’s, when the prevailing 

wide area network technology was vastly different 

from that of today. Various modifications to the 

original TCP specification have been made over the 

years, which have, to some extent, mitigated some 

of the original design constraints, though these 

changes have always had to retain backwards 

compatibility with existing implementations and 

therefore are optional. This has resulted in vastly 

different performance depending on the specific 

optional features used, and how they are applied, 

so that the performance of a connection between 

two hosts can be hugely different depending on 

many factors such as the operating system in use ( 

or even the exact version of that OS, ) and the use 

of various algorithms to deal with issues such as 

packet loss or link congestion. 

For this reason, Aritari developed a TCP optimisation 

function within its ViBE SD-WAN product, which 

eliminates these problems across any network where 

ViBE is in use, by virtue of the fact that a proprietary 

protocol is used instead. Outside of the SD-WAN 

tunnel, this process is completely transparent to the 

hosts and applications that still believe they’re using 

TCP. 

This document will touch on some of the issues 

with TCP, as well as some information about how 

Aritari’s ViBE system eradicates them. 
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TCP is a reliable transport protocol - that is to say that an 

application can send data using it in the knowledge that 

all information sent will be received by the other side of 

the connection without errors, and in the order that it was 

originally sent. In a perfect world this would be taken care 

of by the network itself, though in reality that cannot be 

guaranteed. For one thing, decisions taken by routing 

devices can result in packets of information being 

transmitted out of order - maybe because a route 

changes or because processing within the device itself 

results in the order difference. Some bonding solutions 

(not Aritari’s ) also pay no regard to what constitutes a 

stream of packets, and so the same stream of information 

may flow along multiple paths, with the constituent 

packets arriving at their destination in the order 

determined by those individual routes. 

Packet loss can (and frequently does ) also occur, whether 

because of momentary signal quality issues on radio 

based networks, or router buffers being full, or a 

multitude of other reasons. Packet loss is also frequently 

the result of a congested network, which doesn’t 

necessarily mean an overloaded network, only that in the 

fraction of a second that a packet wants to be 

transmitted, there is no room to do so, because there’s 

already one being sent, and the router queue is full of 

other packets waiting to be sent. A traffic graph may well 

show that the network is only 10% full, but if you could 

zoom in to the millisecond range, you’d see that in fact the 

network is 100% full for several mS at a time. 
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In very broad terms, TCP will try to cope with issues on the network in the following ways: 

• A connection is established using what’s known as a 3-way handshake process. This involves the 

initiator of the connection sending an “I want to connect” packet, followed by the receiver sending back 

an acknowledgement before actual data transfer can begin. If the latency of the link is high, or if many 

connections are having to be made (such as downloading a web page with many images ) then the time 

taken for all of these handshakes can be significant, so an optional extension to the original TCP 

specification allows for a “fast open,” which allows data to be sent with the initial connection request 

packet. However, there are various security concerns around this, and its use is very hit and miss. 

• In common with all Internet protocols, a stream of information is broken down into packets of 

information, with each of these packets containing routing information so that it can be sent to its 

destination independently of the others. For historical reasons, these packets are normally around 

1500 bytes in size, with 40 bytes of that used for routing information and the remaining 1460 bytes 

containing the actual data. In reality, other protocols in use on the network may reduce the size 

further… for example PPP links normally only allow 1492-byte packets. In the best (usual ) case then, 

2.7% of bandwidth is lost to control data, but often more. 

• When the receiving side gets a sequence of packets, it will send back an acknowledgement to the 

sender to indicate that data has been received. The original TCP specification only allowed for in-order 

acknowledgements, so if a packet is received that doesn’t follow on from previous packets, the receiver 

will wait until it gets the missing packet before sending an acknowledgement for all data so far 

received. An update to the protocol, called “selective acknowledgements,” allows more modern 

systems to tell the sender that everything else has been received, but this is optional. 

• The sender must therefore keep all data that’s been sent in a buffer until it knows that the receiver has 

successfully received the data sent so far. Since machines that are sending the data are normally used 

for other tasks and can be sending many such streams at once, the amount of data that is kept in these 

buffers is limited to the “window size.” Once the transmission window is full, the sender must stop 

sending further data until there is space to save the new information. All data in the send buffer will 

need to be kept for at least as long as it takes to send that information to the other side AND receive an 

acknowledgement back that it has been received ok. The original TCP specification only allowed for 64k 

of data to be saved as a maximum, though there is another optional extension “window scaling” that 

allows this value to be multiplied so that up to one gigabyte can be stored. 

• Whilst the connection is ongoing, TCP will attempt to mitigate the effects of congestion on the network, 

in order to prevent problems caused by the fact that any given link may intermittently have more data 

to transmit than it is physically able to. If ignored, this fact could cause connections to slow down 

massively due to the sudden increase in delay or packet loss that would happen in this situation, so 

various “congestion control algorithms” are used by operating systems to prevent this from happening. 

There are many such algorithms, but each is suited more to specific cases than others, so inevitably 

these algorithms involve compromise, and their effectiveness can vary widely. 

From this description, it should be recognised that the latency (the time taken for a packet to travel from 

sender to receiver ) can have a huge impact on the amount of data needed to be stored, and hence how 

much data can be sent before the connection needs to be paused.  
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Normally, the initial 3-way handshake happens 

between the client (the PC, laptop etc ) making 

the initial connection, and the server 

(web/ftp/etc. ) from which it intends to receive, 

or to which it intends to send, data. The time 

taken for this connection will be affected by 

several factors: 

• The amount of time the server takes to 

validate the request. Historically, this 

would have been a significant factor, but 

nowadays most hosts will respond in 

fractions of a millisecond. 

• The round trip time (RTT) from the client 

to the server - it will be at least this length 

of time before the client can start to send 

data. As noted in the TCP Operation 

section, there is a recent mechanism 

called “fast open”, which allows the client 

to send data with the initial connection 

request, so for example it could send 

information about the web page that it 

wants to receive without waiting to see if 

the connection is established. However, 

there are various security concerns 

around this mechanism and its 

implementation is hit and miss (it has to 

be enabled on both client and server). 

• Any packet loss that occurs in establishing 

the connection. If the initial connection 

request packet happens to go missing 

between the client and the server, than 

this will increase the time taken for the 

connection to be established by an order 

of magnitude, since at this point the client 

has no way to know how long it should 

wait before trying again - depending on 

the specific operating system used on the 

client it can easily be several seconds 

before retrying.  

If an Aritari ViBE connection is in place between the 

client and server, and TCP Acceleration is enabled, 

then ViBE acts as a proxy for the connection, which is 

to say that rather than the client establishing a 

connection with a server, it actually connects to the 

nearest ViBE device - this is completely transparent to 

the client machine. Normally the nearest ViBE device 

will be an Aritari CPE on the same network as the 

client, meaning that the initial connection can be 

established in fractions of a millisecond, and the client 

will begin to send data almost immediately. Also, it is 

much less likely that packet loss will occur on the local 

area network (LAN) than it is on the wide area 

network (WAN.) 

Across the SD-WAN connection, ViBE uses its own, 

proprietary protocol in order to make the connection 

to the server, and this protocol handles packet loss in 

a much more efficient way than TCP can, meaning 

that even if the initial connection request goes 

missing, end to end communication will still be 

established quickly. 

Finally where the connection exits the ViBE network 

(at the nearest Aritari device to the server,) a standard 

TCP connection will be made between the exit ViBE 

node and the server itself. Again this remains 

completely transparent to the server, which thinks it is 

communicating with the client (and vice-versa.) 
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In the TCP Operation Basics section, we 

introduced the concept of TCP Window 

Size, which is the amount of 

information that one end of the 

connection can send before having to 

wait for an acknowledgement. In an 

ideal case, with no packet loss, then the 

window size needs to be at least the 

round trip time of the link (in seconds) 

multiplied by the real throughput 

between the client and server - if this 

isn’t the case, then the throughput of 

the connection will be limited by that 

rather than the speed of the link itself. 

In recent years, the TCP Window Scaling 

option has increased the maximum size 

allowed from its initial value of 64 

kilobytes, though as with other options 

this has to be supported by both client 

and server. Even with scaling, the 

connection will start off with a fairly 

small window size and slowly increase it 

as the connection progresses, providing 

that there is no packet loss in the 

meantime, which means that the speed 

of the connection will NOT initially be 

the speed of the link (assuming a 

reasonably fast link or high RTT. ) 

Packet loss, however small, can have a 

profound effect on this scaling 

mechanism, since in the event of loss 

the window size is normally reduced, 

and the ramp-up process begins again 

from this new, reduced value. Also, 

whilst the theoretical maximum 

window size using scaling is 1 gigabyte, 

operating systems often have their own 

limit which is lower than this. 

  

Since the Aritari ViBE connection does not use TCP, the 

issues of window size and the need for TCP selective 

acknowledgement to be supported by both ends of the 

connection vanish for the portion of the link carried by the 

SD-WAN. In an ideal case, the ViBE link will cover the portion 

of the journey between client and server with the highest 

latency and that is most likely to suffer packet loss or 

congestion, and therefore the transmission speed between 

client and server will always be as fast as possible. The 

details about how this works are proprietary, but the effect 

within the tunnel is that: 

• There is no “ramp-up” procedure. The TCP connection 

will operate at full speed regardless of the available 

bandwidth and round-trip time. This fact alone can 

improve throughput significantly, especially where the 

amount of data to be sent is quite small (the TCP ramp-

up would never complete ) or the latency of the 

connection is high ( the TCP ramp-up takes longer. ) 

• Packet loss does not adversely affect the throughput, 

beyond having to re-transmit the lost packets. This is the 

result of several factors: 

o When loss is detected, the connection is not 

immediately slowed down by a reduction in window 

size as would be the case with TCP. 

o The loss of individual packets of data is recognised 

immediately, without having to guess how long to 

wait before deciding that they are actually lost. 

o Only those lost packets are retransmitted, and this 

happens immediately. 

This combination of factors can produce connections which 

have much higher throughput when using Aritari ViBE rather 

than TCP alone, sometimes an order of magnitude higher. 

The actual results achieved will depend very much on 

underlying network conditions, though the key thing here is 

that the ViBE connection will be consistently good, and 

hugely less affected by transient changes in the network 

conditions. 
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Any given connection will have a limit on the amount of data 

throughput that it can sustain, and the connection between a 

client and server will be limited by the slowest link in the chain 

(normally the “last mile” or customer connection.) 

In a typical scenario, a client may be connected to a 1 

Gbit/s Ethernet, which is then plugged into a router. This 

router may then have a 20 Mbit/s upstream connection to 

the Internet, the other end of which connects to a multi-

gigabit backbone. If the client PC in London wants to 

connect to a server in San Francisco, then there will be 

various links involved forming part of the backbone, finally 

terminating in a (hopefully) multi-gigabit connection to the 

server. If the client is using a typical DSL type link, then the 

reverse direction will be similar, but the last mile 

connection might be 70 Mbit/s rather than 20. 

In terms of link performance, there are two key factors 

involved here: 

• The RTT (round trip time) between London and San 

Francisco, which will probably be around 145mS. There 

will in addition to this be a latency added by the last-

mile connection because of the relatively low link speed 

and also the fact that data has to be encoded and 

decoded to be sent on a typical customer link, which 

might be 20mS in this case, making the RTT 165mS 

• The last-mile link speed, which is 20 Mbit/s to send and 

70 Mbit/s to receive - i.e., almost certainly much slower 

than any other connection in the chain. 

Let’s assume that there is no inherent packet loss on this 

link, and that conditions are perfect. When the client 

makes the initial connection request in this scenario, it will 

assume that it has 1 Gbit/s of bandwidth available to all 

connections that it makes, since this is all it can see (it has 

no idea about the rest of the connection to the server.) 

This fact doesn’t really matter too much if this is the only 

connection because the connection request is just a single 

packet - it will arrive at the router and immediately be sent 

on to the Internet link, because there’s nothing else on 

there, and all is well. By far the biggest factor in this case is 

the fact that it will be at least 165mS before the connection 

is established.  

What happens, though, when the client 

wants to upload to the server? The client 

believes that it can send 1 gigabit per 

second, because again this is all the 

information it has, so it will send as much 

information as it can as quickly as it can 

(in the case of TCP, this will be limited to 

the initial window size, which as you will 

see is very important here.) The router 

that is connected to the slower Internet 

link will receive all of these packets from 

the client and will start to send them to 

the network, though quite obviously it can 

send them nowhere near as quickly as 

they came in, so it will store (“buffer”) 

what it can’t send immediately in a queue, 

waiting until it CAN be sent. However, at 

this point the router has two choices: 

• Save every packet that it can’t send in 

its buffer, waiting until it can send 

them. The problem with this strategy is 

that anything else trying to send on the 

Internet link will also have to be added 

to the end of this buffer, so that there 

will be an additional latency incurred 

by these new packets. If each packet is 

a typical 1500 bytes, then for a 20 

Mbit/s upstream link this additional 

delay will be around 750 

microseconds, which might not sound 

much, but even if the TCP window size 

is very small (say 64 Kbytes) then this 

would increase to 33mS, but the 

likelihood is much longer. 

• Limit how many packets are saved, in 

order to reduce this additional latency 

on the link. In this case, it has to throw 

away any packets that it receives when 

its buffer is full, meaning that those 

packets are lost (and hence even if the 

link itself has no packet loss, it is 

introduced by this process.) 
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These days most routers are configured with the second of these strategies, using the theory that increased 

latency is not good because it affects all connections using the link, whereas packet loss can be detected and 

the sending of data slowed down in order to prevent buffers from filling. TCP uses this idea by the 

implementation of what are called “congestion control algorithms.” Depending on which algorithm is in use by 

the operating system, the TCP connection will be slowed down in various ways in response to packet loss, 

which also explains why, when packet loss happens on a link, the initial reaction of the TCP sender is to reduce 

the speed at which it sends. 

These issues are, of course, exacerbated by the fact that in a real network, there will be many such 

connections in progress or trying to be established, and any one of those connections could in theory fill 

the router’s buffer. No TCP congestion control algorithm is perfect - they all have their strengths and 

weaknesses, and the average user has no idea what algorithm is in use or what effect that may have on 

the network. Additionally, other protocols such as UDP have no such built-in brake, relying instead on the 

individual client/server connection to have its own method of congestion control, a fact which can be 

exploited by various denial of service attacks and suchlike. Also, of course, the same thing happens on the 

receiving side, with the service providers routers having the buffers and control of how they’re used. 

The net result of all of this is that even in perfect networks, there will be times when the Internet link is not 

being used to its full potential. Even a single new connection could fill a router buffer and cause packet 

loss to be seen by all connections, and the higher the utilisation of the network, the worse this issue 

becomes. 

An Aritari ViBE connection removes or greatly reduces the impact of these issues. For one thing, simple 

linear (first in, first out, or FIFO) buffers are never used, so that any new packets can always potentially be 

sent on the link. Also, ViBE knows exactly how much bandwidth is available, and so can manage access to 

that bandwidth in a controlled manner, even when protocols such as UDP which don’t have a built-in 

congestion control mechanism are used. Individual TCP senders will not see packet loss introduced due to 

overflowing router buffers - instead ViBE controls their send rate by controlling when it sends 

acknowledgements, which means that there is no longer any reliance on how good (or otherwise) the 

congestion control algorithm of a particular client machine might be. 

Another significant advantage of using ViBE is that there is no trade-off between very small (associated 

with connection requests, credit card transactions and interactive terminal sessions) and very large 

packets (associated with file/data transfer.) This means that interactive sessions such as ssh, POS, bank 

card, or other character-based systems remain completely responsive even when the network is heavily 

utilised.  
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All Internet data has overheads which cause inefficiency in 

sending that information across a network. These overheads 

occur at several layers of a connection: 

• Physical Layer.  

Any given link, such as an Ethernet cable or a WAN link, 

will need to have some way of reliably sending 

information across it. You may believe that Ethernet, for 

example, is pretty efficient, but in reality, there are several 

overheads added to every single packet transmitted, 

amounting to about 20 bytes. 

• Data Link Layer.  

This is how two hosts on the same network communicate. 

In a typical Ethernet implementation, this amounts to 18 

bytes, though other technologies can be even less efficient 

and their encoding schemes complex. A good example of 

this last point is DSL, which is still based around a protocol 

called ATM which was developed originally to carry 

multiple telephone calls on a link. On an ATM link, every 

packet of information is broken down into fixed 53 byte 

“cells,” each of which has 5 bytes used for carrying 

signalling information. In addition, each packet has an 8-

byte trailer appended. If there isn’t enough data left to fill 

the end of a cell, it will simply be transmitted empty. 

• Network Layer.  

This layer is responsible for splitting data into smaller 

packets, and for allowing these packets to be routed along 

multiple network segments in order to get to where they 

need to go. By far the most common protocol used here is 

“Internet Protocol” (IP) which comes in two flavours that 

are still in use, namely IPv4 (which adds at least 20 bytes to 

each packet) and IPv6 (which add at least 40 bytes to each 

packet.) 

• Transport Layer. 

This is where protocols such as TCP (Transport Control 

Protocol) and UDP (User Datagram Protocol) come in 

(since they’re normally sent over IP, they’re often referred 

to as TCP/IP and UDP/IP respectively.) In the case of TCP, 

this adds at least 20 bytes to each packet. 

 
  

As you can see, any given stream of 

packets will contain a lot of 

information that has to be sent, but 

that doesn’t actually contribute to 

the data received in any way. If we 

assume that the packet size is the 

typical WAN value of 1472 bytes and 

we’re sending TCP over an ADSL link, 

then 15% of the bandwidth of the 

connection is immediately lost to 

these overheads, and for streams 

that use small packets (voice calls, 

for example) this figure can be much 

worse. 

Whilst the Aritari ViBE SD-WAN 

system still has to be sent over the 

Internet, and so still has to deal with 

the overheads of its own packets, 

the way it packages up connections 

in a tunnel means that these 

overheads are massively reduced for 

connections passing through it. If 

we’re talking about a single TCP file 

transfer across a WAN link with 

nothing else going on, then these 

factors roughly cancel out, so that 

the throughput with and without 

ViBE (ignoring the other factors 

previously discussed) would be very 

similar. However, in a typical 

network, where there are a mix of 

connections and packet sizes, the 

cumulative effect can be quite 

significant, meaning that more of the 

available bandwidth can be used, 

more of the time when using Aritari’s 

system. 
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Whilst theory is great, there’s nothing quite like seeing the results of 

all of this based on real-life testing. Unfortunately, every network is 

different, and every use case is different, so it’s not really possible to 

give an answer to a question such as “what is the typical 

improvement I can expect.” Here, then, we present data produced by 

sending files across a simulated 100 Mbit/s symmetric network, with 

a round trip latency of 100mS (which is a typical value that might be 

experienced when going from a last-mile connection in the United 

Kingdom to a server based in New York City.) Clearly there are 

networks with much higher latency than this (UK to Australia is 

typically closer to 300mS for example) and those with much lower 

values (UK to UK would be more like 20-30mS depending on the last-

mile technology in use.) In reality, the latency doesn’t affect the 

results over an Aritari ViBE network at all, whereas it would affect a 

raw network using TCP. Just to prove this latter point, we also show a 

link with a 500mS latency (which you might see on a traditional 

satellite connection, for example.) 

All of the following sections show graphs comparing the non-ViBE 

case on the left, with the Aritari accelerated case on the right, but 

with an otherwise identical test procedure (transferring the same 

amount of data with the same latency/loss.) In some cases, the 

transfer might start at slightly different times with respect to the 

start of the capture that produced the graphs, so whilst the X axis 

always shows seconds, the actual test may start at a slightly different 

time offset from 0. Wherever possible, the Y axis (throughput) scale 

is the same for both graphs, though the X axis (time) is different in 

order to show the same amount of data being transferred on each 

graph (often the accelerated test is completed significantly more 

quickly than the non-ViBE version.) Note, though, that although each 

pair of graphs show the same transfer left and right, different tests 

may involve different sized files in cases where the non-accelerated 

case would take too long to complete - the files were always either 

300 or 100 megabytes in size. 

These tests were using a client and server running Ubuntu 22.04 LTS 

and connected using a Linux network emulator which allows latency 

and packet loss to be inserted into a link, but other than that no 

tweaks were made to any of the standard operating system settings.  
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Nowadays it’s unusual for any modern system to not implement the window scaling feature of TCP, 

though until recently there were still many operating systems that didn’t implement it very well. Even so, 

there are still many older devices which still use 64 Kb as their maximum window size, so this is simply an 

illustration of what would happen if you tried to send data to such a machine. 

As you can see by the graph on the left, without using Aritari ViBE, throughput is severely limited by the 

relatively small window size in use, whereas when a ViBE tunnel is in use (graph on the right) the window 

size in use has pretty much no effect. This makes sense 

- with a window size of 64 Kbytes (actually 65536 bytes) on a 100 Mbit/s connection, it takes only 6mS to fill 

the window, but it will be a further 94mS before any of this data is acknowledged by the other side, 

essentially limiting the rate to 64K every 100mS, or just over 5 Mbit/s. When using ViBE TCP acceleration 

however, the sender will receive the first ACK less than 1mS after it begins to send data (because these 

acknowledgement packets come from the Aritari device on the LAN, and not from the remote side of the 

connection.) 
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This graph shows that (at least in terms of throughput) things are much healthier, even without a ViBE tunnel in 

use (left graph.) With this particular client/server/link combination, the window size ramp-up period is very 

quick, though not instant, and the peak throughput is very close to that achieved with ViBE (right graph.) You 

should note though that even under these perfect conditions, there is still a small advantage in ViBE’s case, 

completing the file transfer around half a second quicker. 

Things aren’t quite so rosy when you look at what happens to the network itself, however. The following graphs 

of latency observed using a simple ping over the link were produced at the same time as the above file transfer: 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

As you can see, the latency experienced by the ping test on the link jumped significantly to around 250mS when 

ViBE is not in use (left graph,) whilst remaining completely unaffected at just over 100mS when it is (right.)  
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You may assume that data sent in one direction of a link has no effect on data going the other way, but 

unfortunately that isn’t the case. In actual fact, if a link is being completely saturated with a single stream, 

the effects of packet loss due to buffer limits, or latency due to large buffers, will be felt by anything sent 

in the same direction as that stream, which includes the acknowledgement packets coming back from a 

TCP server trying to receive data in the other direction. This will cause the TCP algorithms to behave as if 

the connection has higher loss and/or latency than it really has, reducing throughput accordingly. 

Consider the following graphs: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
You can see on the left that the second stream ( which is in the opposite direction from the first ) is 

behaving as if the link is much worse than it otherwise would be ( and indeed the throughput of the first 

stream isn’t perfect, because it too is affected whenever the second stream manages to transfer at full 

speed, however brief these periods are. ) Remember that nothing odd is going on here - we’re simply 

connecting a client to a web server to transfer data in both directions at the same time, which will happen 

in a real situation all of the time (a file being uploaded to the cloud at the same time a one being 

downloaded, for example.) The second stream is affected much more than the first, simply by virtue of the 

fact that it started later, and hence was already seeing the effects of the first using the link… so the first 

stream completes in around 30 seconds vs the second which takes just over 41 seconds (notice that the 

first stream starts around 5 seconds after the start of the graph.) 

As you can see from the graph on the right, when accelerated by Aritari, the streams have no such 

problems, both completing in around 28 seconds. Note that although from the second graph it appears 

that the second stream is transferring at a slightly lower rate than the first - in actual fact this is just an 

anomaly produced by the way the capture works. These captures show not only data, but overheads too, 

which are seen slightly differently when sent vs received… for confirmation you can see that this also 

affects the left graph (when the first stream finishes, the second shows the same slightly lower 

throughput) and also that the streams on the right graph finish at the same time. 

Given that real networks will be sending and receiving data all of the time, you can see how the Aritari ViBE SD-

WAN can improve network responsiveness and throughput even if that network seems to be otherwise perfect.  
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Let’s now add some packet loss into the mix, to see how that affects things. In the real world, packet loss 

can occur for all sorts of reasons, including as we’ve seen simply because routers are managing traffic 

flows. However, at certain times this loss can be quite significant - maybe there’s a short term increase in 

utilisation of a link somewhere, or perhaps you’re using a radio or cellular link which are particularly prone 

to these issues. 

We consider two different levels of loss - 0.1%, which is quite a low level than can easily be experienced on 

a regular basis, and 1%, which is more likely to happen when there are particular issues somewhere along 

the path, though this can include momentary congestion so again it isn’t as uncommon as you’d hope. In 

both cases, the loss is applied in both directions equally, so the 0.1% case is actually 0.05% in each 

direction. 

 

0.1% Packet Loss 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Even at this relatively low loss level, you can already see that the non-accelerated network is struggling. 

Things start off well, but then at some point in the stream, a packet or two go missing, triggering TCPs 

congestion control response, and as a result the throughput is significantly impacted. Again, the Aritari 

accelerated case shows no such issues, completing the transfer in less than half the time. 
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1% Packet Loss 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Here you can see a huge difference, with the non-accelerated transfer taking around 25 times longer to 

transfer this 100 megabyte file. As has been mentioned, a loss figure of 1% is not that uncommon, 

especially when you consider that such an event may only happen for a few seconds at a time, briefly 

killing any transfers in progress when it does and causing a recovery period when it returns to normal. 
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Finally for the testing, let’s consider a traditional satellite link. These use satellites in geostationary orbit, 

whereby they sit in the same place above the earth at all times. 

Unfortunately, the distance involved is quite large, so the delay in getting signals up into space and back 

again will very often be greater than half a second. As has been shown already though, such a high latency 

can also be caused by router buffer management, especially if the underlying latency is high in the first 

place. Earth based communication between, say, London and Sydney, can already exceed 250mS. 

 
No Packet Loss 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Here we have the ideal case of just a single transfer in one direction. You can clearly see two main aspects 

of TCP operation: 

• The “slow start” mechanism, whereby the window size is slowly increased whilst no packet loss is 

experienced. 

• The maximum window size limits the throughput to a particular rate, in this case around 40 megabits 

per second. Increasing the latency will reduce this limit proportionally. 

It’s worth reiterating that different operating systems, and indeed different versions of those operating 

systems, will have different limits on the window size (which can also sometimes be tweaked.) However, 

this test is using Ubuntu Linux 22.04 LTS with “out of the box” settings, and generally speaking Linux is 

very good with respect to TCP implementation when compared to other systems. You can imagine what 

would happen here if you tried to use a system without window scaling at all! 
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0.1% Packet Loss 
 

Any packet loss on such a high latency link, without the aid of acceleration, will have a devastating effect on 

the usability of it. For this reason, we’re only showing the 0.1% loss case, which already has a stark 

contrast between a standard network, and one accelerated using Aritari ViBE, with the latter completing 

the transfer nearly 7 times quicker. 
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We hope that this has been an interesting insight into the workings of TCP and the 

benefits that using an Aritari ViBE SD-WAN solution can bring. Clearly, the results will 

vary depending on your specific use case and the quality of the underlying network, 

but even with a seemingly perfect network there will be improvements, and at times 

very large ones. 

However, most networks are not perfect, certainly not all of the time, so above all ViBE 

provides consistently good results when even the best connections do not. 

Aritari ViBE can be deployed as a simple VPN for a home connection, or a complete 

SD-WAN solution for a global business and can be installed within a customer’s 

premises for both data centre and satellite sites, or as a managed or white label 

service on physical hardware or a virtual cloud infrastructure. Whatever your network 

topology using whatever technology, ViBE can be tailored for your use case. 
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